## Maths No Problem \& Calculation Policy Information KS2

## Contents

- Introduction to Maths No Problem
- Overview of the National Curriculum
- Lesson structure for a MNP lesson
- Progression in key methods from Year 3 to Year 6
- Times tables
- Policies
- How to help at home


## Introduction to Maths - No Problem!

- Based on the evidence-based approach developed in Singapore.
- Fully aligned with the 2014 English National Curriculum for maths.
- The Maths - No Problem! Primary Series was assessed by the DfE's expert panel, which judged that it met the core criteria for a high quality textbook to support teaching for mastery.
- By incorporating established learning research into a highly effective approach, Singapore has become a "laboratory of maths teaching". The Primary Maths Series is founded on the international research of Piaget, Dienes, Bruner, Skemp and Vygotsky and has been tested and refined over the last 30 years in Singapore.


## Teaching maths for mastery

The whole class works through the programme of study at the same pace with ample time on each topic before moving on. Ideas are revisited at higher levels as the curriculum spirals through the years.

## Differentiated activities

Tasks and activities are designed to be easy for pupils to enter while still containing challenging components. For advanced learners, the textbooks also contain non-routine questions for pupils to develop their higher-order thinking skills

## Problem solving

Lessons and activities are designed to be taught using problem-solving approaches to encourage pupils' higher level thinking. The focus is on working with pupils' core competencies, building on what they know to develop their relational understanding, based on Richard Skemp's work.

## Concrete, Pictorial, Abstract (CPA) approach



## Concrete step of CPA

Concrete is the "doing" stage. This stage brings concepts to life by allowing children to experience and handle physical (concrete) objects. For example, if a problem involves adding pieces of fruit, children can first handle actual fruit.


## Pictorial step of CPA

Pictorial is the "seeing" stage. Here, visual representations of concrete objects are used to model problems. This stage encourages children to make a mental connection between the physical object they just handled and the abstract pictures, diagrams or models that represent the objects from the problem.

## $3+2=5$

## Abstract step of CPA

Abstract is the "symbolic" stage. Children use abstract symbols to model problems and need a solid understanding of the concrete and pictorial stages of the problem.

Children are introduced to the concept at a symbolic level, using only numbers, notation, and mathematical symbols $(+,-, x$ and $\div$ )

## Number Bonds

Number bonds show how numbers are split or combined.
An essential strategy of Singapore maths, number bonds reflect the 'part-part-whole' relationship of numbers.


## Bar modelling

Bar modelling is an essential maths mastery strategy.
A Singapore-style of maths model, bar modelling allows pupils to draw and visualize mathematical concepts to solve problems.


Sam bakes 20 cockies.
What if he gives some away?


What if Sam gives away $B$ cookies?
$20-8=$
Then, Sam would have $\square$ cookies left.


## Fractions

In Singapore, the understanding of fractions is rooted in the (CPA) model, where children use paper squares and strips to learn the link between the concrete and the abstract.

## 1. Finding equal parts


2. Naming equal parts


## 4. Equivalent fractions



## Variation

The questions and examples are carefully varied by expert authors to encourage pupils to think about the maths. Rather than provide mechanical repetition, the examples are designed to deepen pupils' understanding and reveal misconceptions.

## Year 3

## Number Patterns

(1) Fill in the blanks.
(a) 100 more than 200 is $\square$ (b) 100 less than 300 is
(c) 100 less than 783 is
(e) 100 less than 999 is $\square$ . (d) 100 more than 499 is . (f)

(c) $\qquad$ . 900. 800. 700, $\qquad$ .500, 400 Each number is $\square$ less than the number before it.

Look at each number pattern and fill in the blanks.
(a)

(b)


## Making Number Patterns

( Complete the table.

| Number | 1 more than <br> the number | 10 more than <br> the number | 100 more than <br> the number |
| :---: | :---: | :---: | :---: |
| 5938 |  |  |  |
| 8999 |  |  |  |
| Number | 1less than <br> the number | 10 less than <br> the number | 100 less than <br> the number |
| 4818 |  |  |  |
| 2791 |  |  |  |

(2) Complete the number patterns.
(a) 430,530

$\qquad$
(b) 7560 , 590. 7610

3 Find the missing numbers.
(a) 1429 is $\square$ more than 1419.
(b) 3299 is 1 less than $\square$.
(c)

(d) $\square$ is 100 more than 1923.
(e)

10 less than 2903 is



## Variation

## Multiply.


| Add and show your answer in the simplest form.


Year 6

## MNP children



## In Focus

Includes questions related to various lesson objectives as an introductory activity for pupils.

## Let's Learn

Introduces new concepts through a C-P-A approach with the use of engaging pictures and manipulatives. Guided examples are provided for reinforcement.

## Mind Workout



Challenging non-routine questions for pupils to apply relevant heuristics and to develop higher-order thinking skills.

## Maths Journal

Provides pupils with opportunities to show their understanding of the mathematical concepts learnt.

## Guided Practice

Comprises questions for further consolidation and for the immediate evaluation of pupils' learning.

## Activity Time

Provides pupils with opportunities to work as individuals or in small groups to explore mathematical concepts or to play games.

## Self Check

Allows pupils to assess their own learning after each chapter.

[^0]All of these elements make up the MNP programme. In most lessons, children will explore an 'In Focus' problem, journal and complete the guided practice each lesson.

The other parts, children will have the opportunity to do ones a topic.

## Lower KS2 National Curriculum

- The principal focus of mathematics teaching in lower key stage 2 is to ensure that pupils become increasingly fluent with whole numbers and the 4 operations, including number facts and the concept of place value. This should ensure that pupils develop efficient written and mental methods and perform calculations accurately with increasingly large whole numbers.
- Pupils should develop their ability to solve a range of problems, including with simple fractions and decimal place value.
- Pupils are encouraged to draw with increasing accuracy and develop mathematical reasoning so they can analyse shapes and their properties. It should ensure that they can use measuring instruments with accuracy and make connections between measure and number.
- By the end of year 4, pupils should have memorised their multiplication tables up to and including the 12 multiplication table and show precision and fluency in their work.
- Pupils should read and spell mathematical vocabulary correctly and confidently, using their growing word-reading knowledge and their knowledge of spelling.

- The principal focus of mathematics teaching in upper key stage 2 is to ensure that pupils extend their understanding of the number system and place value to include larger integers. This should develop the connections that pupils make between multiplication and division with fractions, decimals, percentages and ratio.
- Pupils should develop their ability to solve a wider range of problems, including increasingly complex properties of numbers and arithmetic, and problems demanding efficient written and mental methods of calculation. With this foundation in arithmetic, pupils are introduced to the language of algebra as a means for solving a variety of problems.
- Teaching in geometry and measures should consolidate and extend knowledge developed in number. Teaching should also ensure that pupils classify shapes with increasingly complex geometric properties and that they learn the vocabulary they need to describe them.
- By the end of year 6 , pupils should be fluent in written methods for all 4 operations, including long multiplication and division, and in working with fractions, decimals and percentages.
- Pupils should read, spell and pronounce mathematical vocabulary correctly.

Year 3, Year 4
Year 5 \& Year 6


## Place value

## Year 4 nmesers todome

9000

10000 ten thousand


10 thousands

nine thousand

2 thousands +3 hundreds +4 tens +5 ones
(2) 1000 (1000) 10010101010 (1) 10 (1) 1

2 thousands +3 hundreds


## Number patterns

(in 6, 7, 9, 100, 25 and 1000's)


10 thousands $=10000$

$$
2345=2000+300+40+5
$$

Use a place-value chart.
2 thousands +3 hundreds +4 tens +5 ones

| thousands | hundreds | tens | ones |
| :---: | :---: | :---: | :---: |
| 2 | 3 | 4 | 5 |

2345 is a 4 -digit number.


We write 2345 as two thousand, three hundred and forty-five.

5 ones
5


## Place value Year 5 <br> Numbers to 1,000,000

Show 59725 using number discs.



## Comparing and ordering

makes the following numbers.


Find the price of each object.


## Method 2 Use a number line.



## Place value

## Year 4 \& Year 5



Rounding to the neares $\dagger$ 10,100 and 1000
Round 4218 to the nearest 100.


Round 2078 to the nearest 1000.



Rounding to estimate money and distance

St James' Park can seat 52404.


52404 is closer to 50000 than to 60000 .
Rounding to the neares $\dagger$ 100, 1000, 10000 and 100,000


37370 is closer to 37400 than to 37300 .

## Place value

## Reading and writing numbers up to 10 million

Show 5472737 using number discs.


The digit 5 is in the millions place. It stands for 5 millions or 5000000 .

The digit 4 is in the hundred thousands place. It stands for 4 hundred thousands or 400000 .

The digit 7 appears more than once.
7 is in the ten thousands place. It stands for 70000 ,

7 is also in the hundreds place. It stands for 700 .

7 is also in the ones place
It stands for 7 .

It stands for 30 .


Year 6

Show 5472737 on a place-value chart.

| millions | hundred <br> thousands | ten <br> thousands | thousands | hundreds | tens | ones |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |


| millions | hundred <br> thousands | ten <br> thousands | thousands | hundreds | tens | ones |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | 4 | 7 | 2 | 7 | 3 | 7 |

$5472737=5000000+400000+70000+2000+700+30+7$

We write 5472737 as five million, four hundred and seventy-two
thousand, seven hundred and thirty-seven.

Adding Recapping methods taught in Year 1 and 2.

Adding ones, tens and hundreds.

## Year 3

 Adding numbers to 1000.

6 blue chairs


12 red chairs

$213+4=217$
There were 217 books in the bookcase.


## Adding - no renaming

## Year 3



Beginning practically with dienes before moving onto column addition Number bond method is taught alongside both methods
$432+521=953$

## Adding

 Year 4Children are expected to be secure in methods taught in Year 3.

Let's estimate.

| 5700 |
| ---: |
| +1200 |
| 6900 |

Children are expected to estimate answers to check accuracy.

Find the sum of 2034 and 9.

## $2034+10=2044$ <br> $2034+9=2043$

Why is the sum 1 less?
Learning mental strategies to add

Find the sum of 98 and 4142 by adding mentally.

$$
\frac{98+4142}{\text { make } 100}=\square
$$

$$
\begin{aligned}
98+4142 & =100+4140 \\
& =4240
\end{aligned}
$$

## Adding - no renaming Year 4




## Adding - with renaming Year 3 Year 4



$10329,20329,30329,40329,50329,60329$

|  | A | B | C |
| :---: | :--- | :--- | ---: |
| $\mathbf{1}$ | Date | Trip | Fare |
| $\mathbf{2}$ | 13 September | Airport to Hotel | 150000 |
| $\mathbf{3}$ | 14 September | Hotel to Office | 40000 |
| $\mathbf{4}$ |  | Office to Hotel | 45000 |
| $\mathbf{5}$ | $\mathbf{1 5}$ September | Hotel to Office | 43000 |
| $\mathbf{6}$ |  | Office to Hotel | 42000 |
| $\mathbf{7}$ |  | Hotel to Restaurant | 25000 |
| $\mathbf{8}$ |  | Restaurant to Hotel | 21000 |
| $\mathbf{9}$ | 16 September | Hotel to Office | 46000 |
| $\mathbf{1 0}$ |  | Office to Airport | 150000 |
| $\mathbf{1 1}$ |  |  |  |
| $\mathbf{1 2}$ |  | Total for Taxi Fare | 562000 |

Rounding to add by estimate


## Adding key facts to simplify



# Adding - with renaming 

 Year 5

> Place value counters to visually support column addition

# Subtracting Year 3 

## Year 4 'Subtracting numbers within 10,000



Recapping methods taught in Year 1 and 2

# Subtracting - no regrouping Year 3 <br> Year 4 



## Subtracting - with regrouping <br> Step 1 Regroup 1 ten into 10 ones. <br> Subtract the ones. <br> 11 ones -6 ones $=5$ ones



Step 2 Subtract the tens.
2 tens -2 tens $=0$ tens


Step 3 Subtract the hundreds.


Beginning practically with dienes before moving onto column subtraction

Number bond method is taught alongside both methods

## Subtracting - with regrouping

## Year 4

Let's Learn
£5280

## In Focus



| 1000 | 1000 | 100 | 100 | 10 |
| :--- | :--- | :--- | :--- | :--- |
|  | 10 |  |  |  |
| 1000 | 1000 |  | 10 | 10 |
| 1000 |  | 10 | 10 |  |
|  |  |  | 10 | 10 |


| 2000 | 1000 | 100 | 100 | 10 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1000 | 1000 |  | 10 | 10 | 1 |
| 1000 |  | 10 | 10 | 1 | 1 |
|  |  | 10 | 10 | 1 | 1 |
|  |  |  |  | 1 | 1 |



Children are encouraged to use the inverse calculation to check their answers


## Subtracting

 Year 5Subtracting by counting back


## Subtracting - with regrouping

 Year 5Year 5 are expected to be secure with subtracting without regrouping
Place value counters to visually support column subtraction


Regrouping in each place value column

Take 1 thousand from 80 thousands to make 11 hundreds.

Take 1 hundred from 11 hundreds to make 12 tens.

Take 1 ten from 12 tens to make 13 ones.

## Subtracting Year 4 \& Year 5

Learning mental strategies to subtract

$$
4021-3987=\square
$$

## $3987 \rightarrow 3990 \rightarrow 4000 \rightarrow 4021$ <br> 



## Using 4 operations on whole numbers

## Year 6

## Brackets

Indices
Multiplication
Addition
Division
Subtraction
(1) wrote this expression:
$6+5-1-2-3-4$
$6+5-1-2-3-4=1$

(2) wrote this expression:
$3 \times 4+2-(6+5+1)$
$3 \times 4+2-(6+5+1)$
$=3 \times 4+2-12$
$=12+2-12$
$=14-12$
$=2$

$$
3 \times 4+2-(6+5+1)=2
$$

Using BIDMAS to help them solve problems where there is more than one operation in a calculation.
(3) wrote this expression:
$2 \times 3 \times 6 \div 4-5-1$
$2 \times 3 \times 6 \div 4-5-1$

For $\times$ and $\div$,
calculate from calculate from left to right

$=6 \times 6 \div 4-5-1$
$=36 \div 4-5-1$
$=9-5-1$
Subtract from left to right.
$=3$
$2 \times 3 \times 6 \div 4-5-1=3$

Can you make an expression that has the value of 4 ? How about the values of 5 or 6 ?
(4) made a different expression that has the value of 3 .

$$
(1+2) \div 3 \times 4+5-6
$$

Step 1: Perform the calculation in the brackets first.
Step 2: Multiply or divide whichever comes first. Step 3: Add or subtract whichever comes first.

$$
(1+2) \div 3 \times 4+5-6=3
$$



Bar modelling models to assist



Year 3
Children will be taught that the numbers they are working with are too large to create practically so a bar model represents these numbers instead.

## Subtract 270 from 400.


$400-270=$


Comparative bar model
$\square$

## Bar modelling



## Comparing two

 valuesHow many more legs does a spider have than an ant?


Applying addition and subtraction skills to word problems with bar models to assist


[^1]
## Bar modelling

## In Focus

A baker made 2750 chocolate cookies and 1638 vanilla cookies.

He sold 3195 cookies altogether.
How many cookies did he have left?


Understand the problem

| Who? | baker |  |
| :--- | :---: | :---: |
| What? | $\ddots$ | $\ddots$ cookies |



Carry out the plan

$$
2750+1638=4388
$$

The baker baked 4388 cookies.

$$
4388-3195=1193
$$

He had 1193 cookies left.
Column addition and subtraction


## Check

| Cookies sold | 3195 |
| :--- | :---: |
| Cookies left | 1193 |
| Cookies baked | 4388 |



Part - part - whole bar model

## Bar modelling

## In Focus

On Saturday, 3018 people attended a funfair. 850 more people attended the funfair on Saturday than attended it on Sunday.

Altogether, how many people attended the funfair over the two days?


Carry out the plan

$3018-850=2168$
2168 people attended the funfair on Sunday.

## Make a plan



Sunday



$3018+2168=5186$


Comparative bar model


## Bar modelling Year 5

Children in year 5 will begin to use a range of different bar models to solve a range of problems


## Bar modelling

By year 6, children should be able to use a range of different types of bar models to solve word problems

## Year 6



At first, - and - had the same amount of money. After -1 gave - had 4 times as much money as had.

How much money did - and have altogether?
before


$$
\begin{aligned}
3 \text { units } & =£ 732 \\
1 \text { unit } & =£ 732 \div 3 \\
& =£ 244
\end{aligned}
$$

## Multiplication

## Year 3

3,4 and 8 times tables

## Equal groups <br> 1 group of 3 <br> $1 \times 3=3$

2 groups of 3
$2 \times 3=6$


Language and repeated addition

$\square$ $1 \times 4=4$

| $\vdots$ |  |
| :--- | :--- |
| $\vdots$ |  |
| $\vdots$ |  |
| $\vdots$ |  |
| $\vdots$ | $2 \times 4=8$ |

## Further multiplication Year 3, ,ands simes abbes

$\left[\begin{array}{lll|l|l|}\hline 0 & 0 & 0 & 0 \\ \hline & 0 & 0 & \\ \hline\end{array}\right.$

Multiply 2 ones by 4 $2 \times 4=8$


$$
\begin{array}{r}
t \quad 0 \\
2 \quad 0 \\
\times \quad 4 \\
\hline 80 \\
\hline
\end{array}
$$


3. Bridged column multiplication


## 2 tens $\times 8=16$ tens

 16 tens +2 tens $=18$ tens$23 \times 8=184$
The product of 23 and 8 is 184 .

## Multiplication Year $4,9,0$ mand 12 inmsumbes



By the end of Year 4, children are expected to know ALL of their times
tables up to $12 \times 12$




## Further multiplication

 Year $47,9,11$ and 12 times tables

## Further multiplication

## Year 4



Which method is best?

# Multiplication 

 Year 5Finding multiples

| 000000 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $1 \times 6=6$ | 1 | 2 | 3 | 4 | 5 | 6 |
| 990909 090900 | $2 \times 6=12$ | 7 | 8 | 9 | 10 | 11 | 12 |
|  |  | 13 | 14 | 15 | 16 | 17 | 18 |
| amenas 000900 80coses | $3 \times 6=18$ | 19 | 20 | 21 | 22 | 23 | 24 |
|  |  |  |  |  |  |  |  |

Prime numbers

| number | factors |
| :---: | :--- |
| 5 | 1 and 5 |
| 7 | 1 and 7 |
| 4 | 1,2 and 4 |
| 9 | 1,3 and 9 |
| 6 | $1,2,3$ and 6 |
| 8 | 5 and 7 are |
| prime numbers. |  |
|  |  |
| $4,9,6$ and 8 are |  |
| not prime numbers. |  |


| $48=(1) \times 48$ | $64=(1) \times 64$ |
| :--- | :--- |
| $48=(2) \times 24$ | $64=(2) \times 32$ |
| $48=3 \times(16)$ | $64=(4) \times(16)$ |
| $48=(4) \times 12$ | $64=(8) \times 8$ |
| $48=6 \times(8)$ |  |



Square and cube numbers

## Further multiplication



Recap:
Bridged and short multiplication but with larger numbers

Place value counters are initially used alongside the column method to support pictorially

## Further multiplication

## Year 5



## Multiplication

 Year 5| $12 \times 10$ | $12 \times 100$ | $12 \times 1000$ |
| :---: | :---: | :---: |
| 1010 | $1 0 0 \longdiv { 1 0 0 }$ | $10001000$ |
| 1010 | 100 | 10001000 |
| 1010 | $00 \quad 100$ | .000 1000 |
| 1010 | $0100$ | $0001000$ |
| 1010 | $100$ | 11000 |
| 1010 | $00100$ |  |
| $\begin{aligned} 12 \times 10 & =12 \times 1 \text { ten } \\ & =12 \text { tens } \end{aligned}$ | $\begin{aligned} 12 \times 100 & =12 \times 1 \text { hundred } \\ & =12 \text { hundreds } \end{aligned}$ | $\begin{aligned} 12 \times 1000 & =12 \times 1 \text { thousand } \\ & =12 \text { thousands } \end{aligned}$ |



12000


## Multiplication

## Year 6

$320 \times 31=$

$320 \times 30=9600$

| $320 \times 1=320$ |
| :--- |
| $320 \times 31=9920$ |

Multiplying $\mathbf{3}$ digit numbers by 2 digit numbers
Multiplying using long multiplication

$$
320 \times 31=
$$



$$
114 \times 24=
$$

## Division

Year 3 3, 4 and 8 times tables

In Focus

$12 \div 4=3$
3 plates are needed.
'Groups of' vs 'equal groups'


We can make a family of multiplication and division equations.
Family of commutative and inverse calculations

(1)


Method 1 $8+8=16$
Method $2 \quad 2 \times 8=16$has 16 coins.

## Further division

1. Number bond method

2. Long division method

3. Move onto problem solving involving these methods and bar models

$$
36 \div 9=?
$$

## 'equal groups <br> VS

'groups of'

Placing into 9 equal groups

$36 \div 9=4$

Each group has 4 strawberries.

Placing in groups of 9


$$
36 \div 9=4
$$

There are 4 groups.

There were 11 balloons.


$$
11 \div 2=5 \text { remainder } 1
$$

The quotient is 5 and the remainder is 1 .
Each friend got 5 balloons.
There was 1 balloon left over.

Children are introduced to the concept of remainders

## Further division

$4 \div 4=$ $\square$
(1) 111
$4 \div 4=1$
$40 \div 4=$ $\square$
Method 1


Divide 400. Divide 8.

$\begin{array}{llll}10 & 10 & 10 & 10\end{array}$
$40 \div 4=10$
$400 \div 4=$
100100100100
$400 \div 4=100$


## Further division

Once confident with the partitioning and long division methods, remainders are introduced using these methods.

Method 1


Method 2



It is not possible to put 75 children into 6 equal groups.

Move onto problem solving involving these methods and bar models.

## Division Year 5


How many can we get from 4792 ?
How many can we get from 4792 ?
How many can we get from 4792? ?

How manycan we get from $4792 ?$

Dividing by 1000 <br> contains 1000 pieces.}


How many 1000 s in 4000 ?

There are 4 (1) in 4000 .
$4000 \div 1000=4$
4 thousands $\div 1$ thousand $=4$


## Dividing by 100



## Further division Year 5


$2528 \mathrm{ml} \div 8=$


Dividing a number with 4-digits using
long division with 4-digits using
long division

Dividing a number with 3-digits using long division


$$
\begin{aligned}
& 8 \begin{array}{r}
2528 \\
-2400 \\
\hline
\end{array} \\
& 128 \\
& \begin{array}{r}
180 \\
-\quad 48
\end{array} \\
& \begin{array}{r}
48 \\
-\quad 4 \\
\hline 0
\end{array}
\end{aligned}
$$

## Division

## Year 6

Dividing 3 and 4 digit numbers by $\mathbf{2}$ digit numbers.


## Fractions

Tenths


## Adding fractions



Finding equivalent and simplifying fractions

$\frac{6}{8}$
8


3


Finding fractions of amounts and sharing more than one

$\square$

Move onto problem solving involving these methods and bar models

## Fractions

Hundredths


Mixed and improper fractions


Equivalent and simplified fractions


There are 2 whole cakes and 5 sixths of a cake.

$$
2+\frac{5}{6}=2 \frac{5}{6}
$$

$$
2 \frac{5}{6} \text { is a mixed number. }
$$

Also: adding and subtracting fractions then finding the simplified form of the answering

## Fractions Year 5

Improper fractions, mixed numbers and simplifying


$$
\frac{1}{6} \text { and } \frac{2}{3} \text { make } \frac{5}{6} \text {. }
$$

$$
-\frac{4}{6}=\frac{2}{3}
$$

Adding fraction pairs before adding fractions with different denominators

Sharing objects to write as improper and mixed numbers

$$
5 \div 3=1 \frac{2}{3}
$$



3 apples shared equally among 3 friends.

$$
3 \div 3=1
$$



The remaining 2 apples are shared equally among 3 friends.

$$
2 \div 3=\frac{2}{3}
$$

Making denominators the same and simplifying the answers.

$\begin{aligned} \frac{1}{9}+\frac{1}{3} & =\frac{1}{9}+\frac{3}{9} \\ & =\frac{4}{9}\end{aligned}$

$$
\begin{aligned}
& 1 \text { ninth }+3 \text { ninths } \\
& =4 \text { ninths }
\end{aligned}
$$



## Fractions Year 6

Adding mixed numbers, improper fractions and proper fractions with different denominators

Multiplying fractions by fractions. Moving on from multiplying fractions by whole numbers
$\frac{1}{2} \times \frac{2}{3}=$


$$
\frac{1}{2} \times \frac{2}{3}=\frac{1}{3}
$$



$$
\frac{3}{4} \div 3=\frac{1}{3} \times \frac{3}{4}=-\quad \begin{gathered}
\text { I receive a fraction } \\
\text { of } \frac{3}{4} \text { of the bar. }
\end{gathered}
$$

Dividing fractions by whole numbers

Decimals

- makes 110.10 .10 .1.

| 1 | 0.10 .1 |
| :---: | :---: |
| 1 | 0.1 |
| ones | tenths |
| 2 | 3 |

2 ones +3 tenths
$=2+0.3$
$=2.3$
The digit 2 stands for 2 ones. The digit 3 stand for 3 tenths.

## Year 4


2 makes $\begin{array}{|c|c|c|c|}\hline \text { tens } & \text { ones } & \text { tenths } & \text { hundredths } \\$\cline { 2 - 4 } \& 0 \& 8 \& 1\end{array}$]$


- makes | tens | ones | tenths | hundredths |
| :---: | :---: | :---: | :---: |
| 0 | 3 | 1 | 8 |

The digit 3 stands for 3 .
The digit 1 stands for $\frac{1}{10}$.
The digit 8 stands for $\frac{8}{100}$.

## hundredths

| tens | ones | tenths |
| :---: | :---: | :---: |
| 2 | 3 |  |


$\xrightarrow{\div 10}$| tens | ones | tenths |
| :---: | :---: | :---: |
|  | 2 | 3 |


| tens | ones | tenths | hundredths | $\div 100$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 4 |  |  | $\longrightarrow$ | tens | ones | tenths |
|  | hundredths |  |  |  |  |  |  |

## Decimals Year 5

Find the sum and the difference.
(a) 8 tenths +1 tenth $=\square 8$ tenths -1 tenth $=$

```
0.1}00.100.10.10.10.1 0.1 0.1 0.1 0.1
0.1)
```


## Other areas covered by decimals:

- Comparing and ordering
- Money
- Weight
- Rounding
- Perimeter

-. Opportunities for consolidation
- SAT practice every half term
- SATs information evening
- Positive and confident mindset


## Multiplication tables check

- From the 2019/20 academic year onwards, schools in England should have be required to administer an online multiplication tables check(MTC) to Year 4 pupils. Due to COVID-19, these have not happened. This academic year (2021-2022) will be the first year where Year 4 pupils will be required to take this check.
- The national curriculum specifies that pupils should be taught to recall the multiplication tables up to and including $12 \times 12$ by the end of Year 4.
- The purpose of the MTC is to determine whether pupils can recall their times tables fluently, which is essential for future success in mathematics. It will help schools to identify pupils who have not yet mastered their times tables, so that additional support can be provided.
- From half term, all children will be taking part in an hour long times table lesson each week. This will ensure a solid foundation and for children who already know them to consider in greater depth.


## Multiplication tables check

'Sound check' is great practise for the multiplication tables check

youve BeIN SE:

## (3) (3) (1) (3) (1) (1) (1) 0

10) 112

## How to help at home

## Year 3:

- Supporting your child in being able to recall their times tables, especially the 2,5 and 10.
- In year 3, they will focus on the 3, 4 and 8 times table so these are also good ones to practice!
- Supporting them in practicing their number bonds to 10 and being able to add single digit numbers.
- Reading the time is first introduced in Year 3 and this is a brilliant exercise to be able to practice at home.
- Developing a passion and positive mindset for maths.
- Supporting your child with their fortnightly maths homework.


## Year 4:

- Helping you child recall all times tables up to $12 \times 12$ in order and mixed.
- Supporting them in moving from number bonds to 10 and linking that with number bonds to 100
- Supporting opportunities where maths can be used in real life and allowing your child to apply these skills to situations
- Estimating


## How to help at home

## Year 5 and 6:

- Talk to your child about what they have been learning at school
- Continue to support them in remembering, recalling and using their times tables
- Provide support if needed with their fortnightly maths homework
- Allow them the opportunity to use maths in real life, when the situation arises.


[^0]:    I know how to...
    $\square$ solve word problems involving addition or subtraction

[^1]:    A spider has 2 more legs than an ant.

